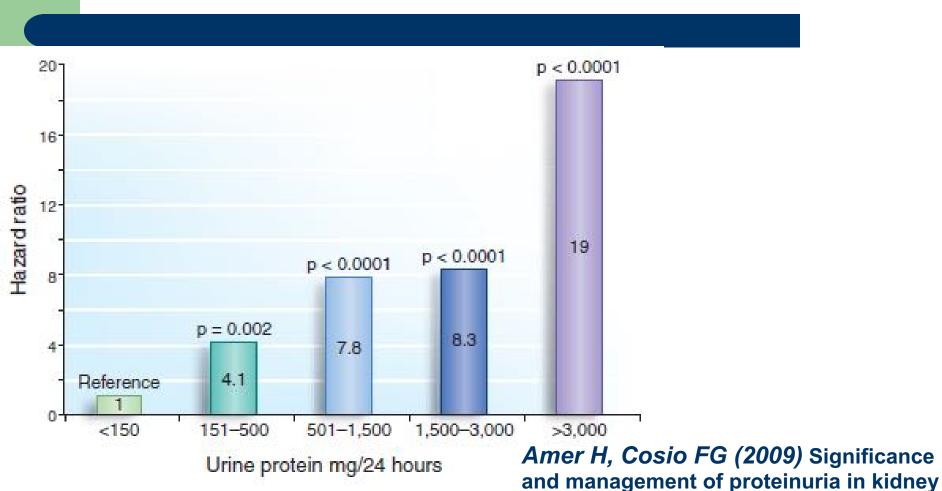


Proteinuria

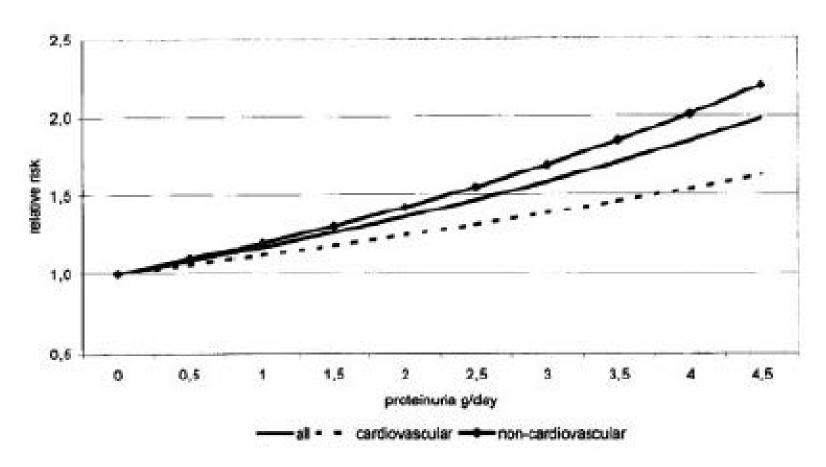
Hypertension

the main risk factors for progression of native kidney diseases

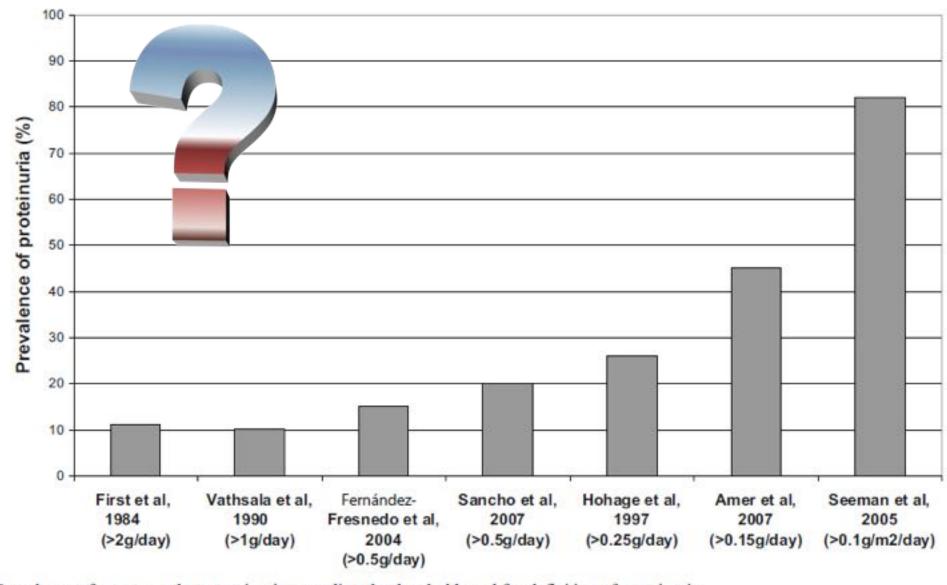
Classification of chronic kidney disease using GFR and ACR categories


Severely increased Severely increased Severely increased	GI	GFR and ACR categories and risk of adverse outcomes		ACR categorie	s (mg/mmol), de range	scription and	
290 G1 No CKD in the absence of markers of kidney damage				Normal to mildly	Moderately	Severely	
Normal and high 60–89 60–89 Mild reduction related to normal range for a young adult 45–59 Mild–moderate reduction 30–44 Moderate–severe reduction 15–29 Severe reduction 415–29 Severe reduction 415–29 Severe reduction 42 43 44 45–59 45–59 45 45–59 45 45–59 45 45–59 45 45–59 45 45 45 45 45 45 45 45 45				A1	A2	А3	
Mild reduction related to normal range for a young adult 45–59 Mild-moderate reduction 30–44 Moderate-severe reduction 15–29 Severe reduction <15 Kidney failure G2 Kidney damage G2 Amage G2 Amage G3a¹ G3b Moderate-severe reduction G3b Kidney failure	range		G1	the absence of markers of			
Mild-moderate reduction 30-44 G3b Moderate-severe reduction 15-29 G4 Severe reduction <15 G5 Kidney failure G3a1 G3b G3b G3b Moderate-severe reduction G4 Severe reduction G5 Kidney failure	1.73m²), description an	Mild reduction related to normal range for a young	G2				
30–44 G3b Moderate–severe reduction 15–29 G4 Severe reduction <15 G5 Kidney failure		Mild-moderate	G3a ¹				
Severe reduction 15–29 Severe reduction <15 G5 Kidney failure	(ml/min/	Moderate-severe	G3b				
Kidney failure	stegories		G4				٧
	GFR ca		G5				

KDIGO 2012



Proteinuria 1 year post-tx is associated with † graft loss (after median follow-up 46 Mo)


transplant recipients. J Am Soc Nephrol

Proteinuria is associated with ↑ both cardiac & non-cardiac deaths

Roodnat et al (2001) Proteinuria after renal transplantation affects not only graft survival but also patient survival. Transplantation

Prevalence of post-transplant proteinuria according the threshold used for definition of proteinuria

Tomáš Seeman (2015) Management of proteinuria in the transplanted patient. Pediatr Nephrol.

Heavy proteinuria

>2-3g/d or >0.960 g/m2/day ~10-15% in children & adults

- Low-grade proteinuria may be more common in children (40-80%)
- Proteinuria from native kidneys falls rapidly after renal transplantation (~4-10wks)
 Persistent or worsening proteinuria is usually indicative of allograft pathology.

Post-transplantation proteinuria

- Common
- Serious

Graft loss, CV events & death

- Even low levels of proteinuria are associated with decreased graft survival and as such warrant attention
- Later (3 Mo+) & persistent (>3Mo) → poor outcome

KDIGO; 2009

Suggests measuring proteinuria at least

- once within the first month
- q3 months in the first year
- Annually after >1yr
- -Patients with proteinuria should be monitored more frequently (every 1–3 months)
- -Idiopathic FSGS should be monitored daily for 2-4 wks & every OP visit in the first yr

Parameter	Collection method	Threshold for pathological finding
Proteinuria (total)	Spot urine	>20 mg/mmol creatinine, i.e. >200 mg/g creatinine Nephrotic range: >220 mg/mmol creatinine, i.e. >2,200 mg/g creatinine
	24-h urine collection (children)	>96 mg/m ² /day Nephrotic range: >960 mg/m ² /day
	24-h urine collection (adults)	>150 mg/day Nephrotic range: >2,200 mg/day
Albuminuria	Spot urine	>3 mg/mmol creatinine; i.e. >30 mg/g creatinine
Alpha-1-microglobulinuria;	Spot urine	>0.55 mg/mmol creatinine
beta-2-microglobulinuria	Spot urine	>0.04 mg/mmol creatinine

Excretion rate (timed collection)
Normalized for body size

Parameter	Collection method	Threshold for pathological finding
Proteinuria (total)	Spot urine	>20 mg/mmol creatinine, i.e. >200 mg/g creatinine Nephrotic range: >220 mg/mmol creatinine, i.e. >2,200 mg/g creatinine
	24-h urine collection (children)	>96 mg/m ² /day Nephrotic range: >960 mg/m ² /day
	24-h urine collection (adults)	>150 mg/day Nephrotic range: >2,200 mg/day
Albuminuria	Spot urine	>3 mg/mmol creatinine; i.e. >30 mg/g creatinine
Alpha-1-microglobulinuria;	Spot urine	>0.55 mg/mmol creatinine
beta-2-microglobulinuria	Spot urine	>0.04 mg/mmol creatinine

Creatinine Normalization → SPOT urine

Parameter	Collection method	Threshold for pathological finding
Proteinuria (total)	Spot urine	>20 mg/mmol creatinine, i.e. >200 mg/g creatinine Nephrotic range: >220 mg/mmol creatinine, i.e. >2,200 mg/g creatinine
	24-h urine collection (children)	>96 mg/m ² /day Nephrotic range: >960 mg/m ² /day
	24-h urine collection (adults)	>150 mg/day Nephrotic range: >2,200 mg/day
Albuminuria	Spot urine	>3 mg/mmol creatinine; i.e. >30 mg/g creatinine
Alpha-1-microglobulinuria;	Spot urine	>0.55 mg/mmol creatinine
beta-2-microglobulinuria	Spot urine	>0.04 mg/mmol creatinine

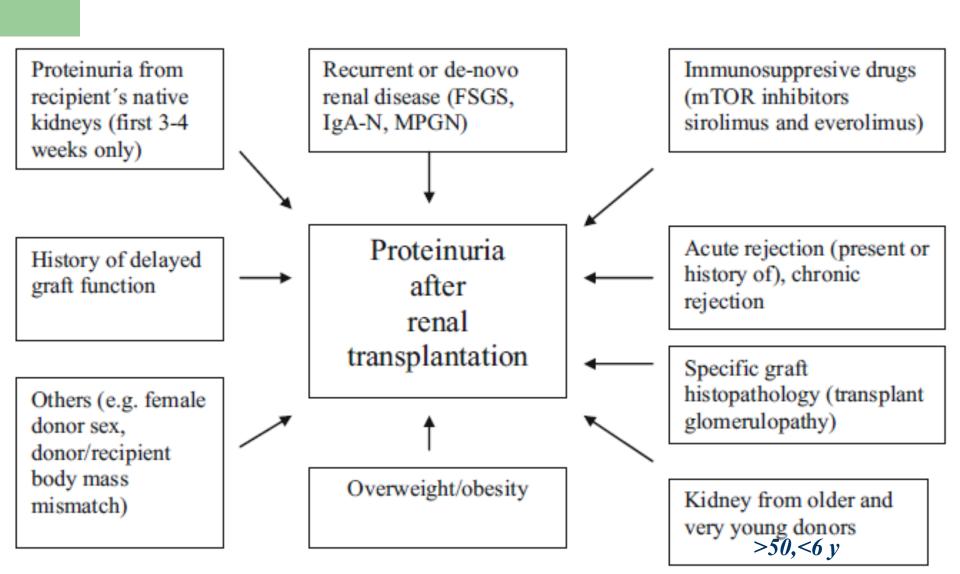
Protein or Albumin?

Parameter	Collection method	Threshold for pathological finding
Proteinuria (total)	Spot urine	>20 mg/mmol creatinine, i.e. >200 mg/g creatinine Nephrotic range: >220 mg/mmol creatinine, i.e. >2,200 mg/g creatinine
	24-h urine collection (children)	>96 mg/m ² /day Nephrotic range: >960 mg/m ² /day
	24-h urine collection (adults)	>150 mg/day Nephrotic range: >2,200 mg/day
Albuminuria	Spot urine	>3 mg/mmol creatinine; i.e. >30 mg/g creatinine
Alpha-1-microglobulinuria;	Spot urine	>0.55 mg/mmol creatinine
beta-2-microglobulinuria	Spot urine	>0.04 mg/mmol creatinine

PCR > 200mg/g, ACR > 30mg/g (micro) -300mg/g

Glomerular or tubular

- Glomerular pathology associated with <u>heavy</u> <u>albuminuria</u> in adult studies
- Glomerular: T.glomerulopathy, recurrent/ denovo glomerulopathy, Hypertension, IF/TA
- Tubular is common (~80%)
- Both associated with impaired graft survival
- Both may have the potential as biomarkers of early AR (controversial)



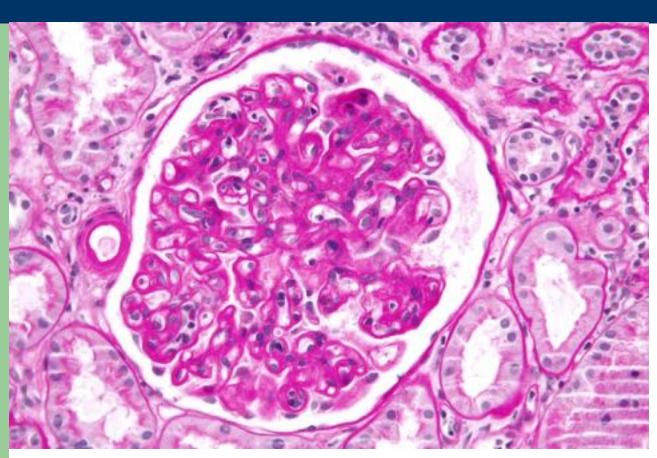
POST-TRANSPLANT PROTEINURIA

- What?
- Why?
- Etiology
- Approach
- Antiproteinuric therapy

Tomás Seeman (2015) Management of proteinuria in the transplanted patient. Pediatr Nephrol.

Causes/ risk factors

Take Care !!


Identifying the cause & its specific treatment can be both difficult & rewarding

- Cause may be progressive
- Opportunity for specific treatment

The common ... think of

- Acute-onset proteinuria & ↑ creatinine
 - → AR
- Sporadic FSGS
 - → Recurrence
- Mild persistent or slowly progressive
 - → IFTA, HTN
- mTORi

Transplant glomerulopathy

-GBM thickening -Mesangial expansion -Glomerulo sclerosis

https://commons.wikimedia.org/w/index.php?curid=19497580

Proteinuria & Rejection

- Glomerular & tubular proteinurias have been proposed as markers of early AR, few days before rising creatinine
 Results not consistent
- Specific proteins in urine

Urine: the fluid biopsy of the kidney

(Prof. Ramzi El Baroudi)

Submit a Manuscript: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.5500/wjt.v5.i4.251 World J Transplant 2015 December 24; 5(4): 251-260 ISSN 2220-3230 (online) © 2015 Baishideng Publishing Group Inc. All rights reserved.

MINTREVIEWS

Role for urinary biomarkers in diagnosis of acute rejection in the transplanted kidney

Basma Merhi, George Bayliss, Reginald Y Gohh

perforin and granzyme B mRNAs, FOXP3 mRNA, CXCL9/CXCL10 and miRNAs.

Mining the human urine proteome for monitoring renal transplant injury

Tara K. Sigdel, Yuqian Gao, Jintang He, Anyou Wang, Carrie D. Nicora, Thomas L. Fillmore, Tujin Shi, Bobbie-Jo Webb-Robertson, Richard D. Smith, Wei-Jun Qian, Oscar Salvatierra, David G. Camp II and Minnie M. Sarwal Kid Int, 2016

35 proteins were identified for their ability to segregate the 3 clinical groups:

- 11 urinary peptides for acute rejection (AUC93%)
- 12 for chronic allograft nephropathy (AUC99%)
- 12 for BK virus nephritis (AUC83%).

Proteinuria & recurrence

- FSGS
- Others

Proteinuria & mTORi

- Known to be associated with proteinuria
- Low dose with CNI→ less proteinuria
- Proteinuria at initiation related to success of therapy (conversion)

Proteinuria & mTORi

- Known to be associated with proteinuria
- No specific histological pattern
- Various mechanisms hypothesized:
 - antiproliferative & proapoptotic effects on tubular cells
 - → ↓ expression of nephrin, podocin and other slit diaphragm proteins

Hypertension & Obesity

- Both are well established in adults
- Hypertension, esp by ABP monitoring, has been associated with increased proteinuria in children
- Both are MODIFIABLE risk factors
- Both have many other complications

POST-TRANSPLANT PROTEINURIA

- What?
- Why?
- Etiology
- Approach
- Antiproteinuric therapy

APPROACH

Check all recipients for proteinuria

THRESHOLD

- Any persistent pathological proteinuria
- (>150mg/d, >96 mg/m2/d or PCR >200 mg/g)
- Nephrotic range proteinuria (any duration)

APPROACH

Check all recipients for proteinuria

-ve

Follow according to protocol

+ve

Is the cause apparent?

+ve

Is the cause apparent?

APPROACH

- acute with ↑ creatinine (?AR) → Biopsy
- pt with FSGS → acute neph-range proteinuria (recurrence, Bx NOT necessary)
- mTORi
- Hypertension
-

	n = 34 (%)	Time of onset of proteinuria Median (range) (month)	Proteinuria level at onset Median (range) (mg/m²/h)
Acute rejection	7 (20)	24 (2-98)	14 (7-57)
Uncontrolled hypertension*	6 (17,6)	4 (1-34)	14.5 (5-49)
Infection-related	3 (8.8)		
BKV infection	2	3 (2-4)	10.5 (9.7-11.4)
Severe pneumonia	1	52	7.9
FSGS recurrence	2 (5.8)	1	145 (111-179)
De novo amyloidosis	1 (2.9)	36	94
Tubulopathy	1 (2.9)	3	30
Hyperoxaluria	1 (2.9)	1	30
Unknown	13 (38.2)	1 (1-37)	10 (6-24)

^{*}One of the patients also had obesity.

Yılmaz et al. (2018). Proteinuria in pediatric renal transplant recipients. Pediatr Transplant.

	n = 34 (%)	Time of onset of proteinuria Median (range) (month)	Proteinuria lev Median (range)			
Acute rejection	7 (20)	24 (2-98)	14 (7-57)	5	1	_
Uncontrolled hypertension*	6 (17,6)	4 (1-34)	14.5 (5-49)	3	3	
Infection-related	3 (8.8)			3		
BKV infection	2	3 (2-4)	10.5 (9.7-11.4)			
Severe pneumonia	1	52	7.9			
FSGS recurrence	2 (5.8)	1	145 (111-179)			
De novo amyloidosis	1 (2.9)	36	94		1	
Tubulopathy	1 (2.9)	3	30		1	
Hyperoxaluria	1(2.9)	1	30			
Unknown	13 (38.2)	1 (1-37)	10 (6-24)	9	2	2
Outcome: 3 graf	t losses	remission improver	ment on-goi	na		

^{*}One of the patients also had obesity.

Yılmaz et al. (2018). Proteinuria in pediatric renal transplant recipients. Pediatr Transplant.

APPROACH

Check all recipients for proteinuria

-ve

Follow according to protocol

+ve

Is the

cause apparent?

NO → Unexplained

Follow

Transient/ persistent

APPROACH

GRAFT BIOPSY

- Evaluation of unexplained persistent proteinuria, particularly: Transplant-
 - New-onset
 - Acute deterioration
 - Nephrotic-range

Transplant-specific diagnoses:

- -T.glomerulopathy
- -Ch. Rejection
- -De novo GN

Treatable causes

Rejection, recurrent FSGS, HTN, drugassociated, infection-associated, ..

POST-TRANSPLANT PROTEINURIA

- What?
- Why?
- Etiology
- Approach
- Antiproteinuric therapy

Antiproteinuric therapy: ACEi

- Reduce proteinuria in adults & children
 - ↓ intraglomerular P
 - Podocyte slit diaphragm preservation
 - Antiproliferative antifibrotic effects
- Recommended by KDIGO for hypertension in CKD
- Can ↓ proteinuria in normotensive patients

Class of drugs	Generic name	Recommended daily dose (mg/kg/day, if not indicated otherwise)	Number of daily doses
Angiotensin-converting enzyme inhibitors	Enalapril ^a	0.08-0.6	2×
	Ramiprila	1.5-6 (mg/m ² /day)	1×
	Fosinopril	0.1-0.6	1×
	Lisinopril	0.08-0.6	1×
Angiotensin receptor blockers	Losartan ^a	0.7–1.4	1×
	Irbesartan ^a	6–12 years of age: 75–150 mg/day;≥13 years of age: 150–300 mg/day	1×
	Valsartan	1–2	1×
	Candesartan ^a	0.16-0.5	1×

^aDrugs used in the clinical setting in children after renal transplantation, based on published studies

ACEi + ARBs

- Combination has additional 30-40% benefit in NON-TRANSPLANTED children on maximal ACEi
- Cautions with ARBs
- K & GFR

Control of hypertension

Control of BP to <75th percentile recommended for

- Adult transplant recipients (KDIGO)
- Non-transplant children with CKD (Eur Society of HTN)

Role of vitamin D?

- Suggested to reduce proteinuria in CKD
- Not studied in transplanted children

Treatment targets

- No direct evidence
- No published data

But there ARE DATA to support than low grade proteinuria affects outcome

- Attempt to reach NORMAL
- <20 mg/mmol or <200mg/g creatinine

Remaining questions

- Validation of PCR in those with reduced GFR
- Role of urinary proteomics
- Direct evidence for intervention thresholds & treatment targets for proteinuria & HTN
- Direct evidence for long-term benefit (vs risk?) of antiproteinuric therapies

Conclusions

- Proteinuria after transplantation is common
- It adversely affects graft outcome
- Patients should be monitored for proteinuria
- Apparent causes include rejection, mTORi, recurrent/ de novo glomerulopathies & HTN
- Biopsy may be needed
- Antiproteinuric therapy has a role
- HTN & obesity must be controlled

Thank you

1

Pathological proteinuria is associated with a urinary protein/ creatinine ratio more than

A 2g/g

B 500mg/g

C 200mg/g

D 30mg/g

Proteinuria is most characteristically associated with the following drug

- A Captopril
- **B** Tacrolimus
- **C** Sirolimus
- **D** Mycophenolate

- A acute rejection
- B de novo FSGS
- C interstitial fibrosis/ tubular atrophy
- D end-stage graft failure